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ABSTRACT 
 

The purpose of this study is to develop a computerized scheme for the discrimination between benign and malignant 
clustered microcalcifications that would aid radiologists in interpreting mammograms. In our scheme, 
microcalcifications in regions of interest (ROIs) are detected by using morphological filter. Then, four feature values 
including the total number, mean area, mean circularity and mean minimum distance of microcalcifications are 
calculated for classification. Gaussian-distributed membership functions used for fuzzy logic are determined from 
means and standard deviations of these feature values. Finally, fuzzy logic using the genetic-algorithm for optimization 
of membership functions is employed to classify clustered microcalcifications in unknown ROI. Our scheme was 
applied to twenty mammographic images with microcalcifications in the Mammographic Image Analysis Society 
database, containing thirteen benign and twelve malignant ROIs. Of the images ten each benign and malignant ROIs 
were used for training in fuzzy logic. The remaining five images were classified as benign or malignant cases by fuzzy 
logic. All sets of their combinations were employed to obtain the result. As the results, the average accuracy was 
approximately 88% (sensitivity: 100%, specificity: 77%), and Az value of ROC curve was 0.95. 
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INTRODUCTION 
 

Breast cancer is a leading cause of cancer deaths among women in many parts of the world. Mammography is 
known as the most effective modality for early detection of breast cancer, such as tumors and microcalcifications. 
Detection of microcalcifications is especially related to early detection of breast cancer because those are considered to 
be suspicious observations in the early stages of cancer. Thus, development of computer-aided diagnosis (CAD) system 
is strongly desirable. In the CAD, it is important to develop a technique for not only detection of lesions but 
classification of them. Once the suspicious lesion has been detected in mammography, biopsy is generally executed by 
extracting cells around the lesion. Since it is an invasive treatment, it imposes burden of pain for patient. Therefore, it is 
considered that computerized classification for suspicious lesion can be helpful for decreasing unnecessary biopsy, and 
can assist radiologists in their diagnosis.  

Some methods of classifications of microcalcifications in mammography have been reported [1-5]. In these studies, 
methods using neural network based on feature values of microcalcifications[1-3], and using genetic algorithm (GA) for 
selecting adequate features[4] have been proposed. However, it is known that a lot of information used for interpretation 
of medical images is fuzzy. So there have been researches on the application of fuzzy logic to the CAD in medical 
images [6-8]. 

In this paper, we propose a new scheme to classify clustered microcalcifications using fuzzy logic with genetic 
algorithm (GA-FL). Details of scheme and results of applying this scheme to a small number of cases are presented as 
well. The performance of our method is evaluated in terms of accuracy, sensitivity, specificity, and Az value of 
receiver-operating-characteristic (ROC) curve.  
 

2. METHOD 
 
2.1 Overall scheme 

Our procedural flowchart is shown in Fig.1. The process consists of training phase and recognition phase. Our 
scheme needs regions of interest (ROIs) including microcalcifications on mammogram. In training phase, first, 
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microcalcification’s regions are extracted from ROIs by using morphological filter and so on [9]. Then, feature values 
including the total number, mean area, mean circularity and mean minimum distance are calculated from extracted 
microcalcification’s regions in ROIs. These calculated feature values are used to derive initial membership functions in 
fuzzy logic. Then, GA is applied for optimizing membership functions in premise part of fuzzy logic. The trained fuzzy 
system is then used to classify unknown images in recognition phase. In recognition phase, microcalcification’s regions 
are extracted from an unknown ROI, and feature values are calculated in the same manner as the training phase. A 
classification result, either benign or malignant is obtained by inputting the feature values to trained fuzzy system. 
Details of each process are described below. 
 
2.2 Extraction of microcalcification’s regions 

The diagram for the extraction process of microcalcifications is shown in Fig.2. In this study, we use the 
mammographic database from the Mammographic Image Analysis Society (MIAS) in the United Kingdom. Each of the 
mammograms in the MIAS database was digitized at a spatial resolution of 50µm sampling distance with an 8-bit 
density resolution. Fig.3(a) shows an example of ROI with microcalcifications. 
   Median filter process is used to remove noise region in 50µm sampled images. Our contrast manipulation is 
indicated as follows:  
 









<

≥−
=

2
0

2
),(2

),(
max

max
max

f
f

f
ffjif

jiF                                                       (1) 

  
where f(i, j) is the pixel value at coordinate (i, j) in an original image and generally indicates an image in itself. fmax is 
the maximum value in density resolution of the image and is set at fmax=255 in this study. The purpose of this processing 
is to remove the unwanted structured background in the mammogram and to re-scale the gray values and, in turn, to 
make the subsequent processing more effective and functional. Fig.3(b) shows an image obtained by executing median 
filter process and contrast manipulation to Fig.3(a).  
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Fig.1 Procedural flowchart of our scheme
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Top-hat transformation appears as the following: 

 

lowpassedjiFjiFjig ),(),(),( −=                                                                (2) 

 
where F(i, j) is contrast-manipulated image obtained from equation (1), and F(i, j)lowpassed is the image obtained by 
applying a low-pass filter to F(i, j). In this paper, mathematical morphology is used to get F(i, j)lowpassed. For that, 
opening process using the cross-shaped structuring element of which diameter is eleven pixels applies to F(i, j). Fig.3(c) 
is the image obtained by applying the opening process to Fig.3(b). Top-hat transformation used in this study is a 
subtraction process of the opening image from the original input image. It serves as a high-pass filter and has the 
property of enhancing potential microcalcification objects.  

The pixel values in the image after performing top-hat transformation are remarkably low within a narrow range, 
and are not sufficient for visualization and for discrimination of each value. Square-curve operation shown as 
  

2),(),( jigjiG =                                                                             (3) 
  
expands the pixel values for them. The image after applying top-hat and square-curve transformations to Fig.3(c) is 
shown in Fig.3(d).  

After performing square-curve operation, there are many non-microcalcification objects such as blood vessels and 
noise among the clustered microcalcification candidates. Many of them are in a range of low pixel values. Those non-
microcalcification objects can be buried by post-processing as the following: 
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Fig.3 Original and processed images. (a) An ROI image in an original 
mammogram. (b) The image obtained by executing median filter and
contrast manipulation to (a). (c) Opening processed image to (b). (d) The 
image after applying top-hat and after square-curve transformations to 
(c). (e) The image that applied post-processing to (d). (f) The image that 
executed opening and contrast manipulation and thresholding processes 
to (e).
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where Gmax is the maximum pixel value in G(i, j). Fig.3(e) shows the image obtained by applying post-processing to 
Fig.3(d). 

Several non-microcalcification objects remain at the present stage. Here, many of them are small objects with low 
pixel values. Therefore, opening process using the cross-shaped structuring element of which diameter is three pixels is 
employed to eliminate small objects. In addition, contrast manipulation is reused to eliminate low-density regions. 
Finally, regions of microcalcifications are extracted by thresholding process. Our final extraction result is shown in 
Fig.3(f). 
 
2.3 Features Calculation 

Four features including the microcalcification number(Num), mean area (Area), mean circularity (Cir) and mean 
minimum distance (Clu) are used to classify the clustered microcalcification in this study. The main reason for using 
these features is that radiologist's interpretation for classifying clustered microcalcifications would be based on their 
distribution, size, shape, and so on. These features are expressed as follows: 
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where n is the number of isolated candidate regions within an ROI image. Ai and Ci are the area of ith candidate and the 
circularity of the ith candidate, respectively. Di is the distance from ith candidate to the nearest candidate. Fig.4 
indicates distributions of features calculated from detected microcalcifications on mammograms in the MIAS database. 
 
2.4 Classification by GA-FL 

The GA-FL method using calculated feature values would discriminate between benignancy and malignancy of 
microcalcifications. The Gaussian-distributed membership functions (GDMFs) are employed in this study as premise-
part membership functions for our fuzzy rule and given by 
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Fig.4 Distributions of calculated feature values. The left graph indicates the distribution of mean area versus the number of 
microcalcifications. The right graph indicates the distribution of mean minimum distance versus mean circularity. 
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where µ and σ are the mean and the standard deviation of the distribution, respectively. c is a coefficient. Fig.5 shows an 
example of GDMF. The shape of GDMFs is determined from calculated feature values. µ and σ are equivalent to values 
of mean and standard deviation calculated by using feature values from a set of training images belonging to the same 
category. In this study, eight GDMFs are generated from four features (Num, Area, Cir, Clu) and two categories 
(Benignancy, Malignancy). Here, the shape of the consequent-part membership functions employed in this study is a 
right isosceles triangle with the maximum value of unity (normalized).  

Fig.6 illustrates the fuzzy system that consists of eight premise-part membership functions and two consequent-part 
membership functions used in this study. Benignancy rule (Rule 1) and malignancy rule (Rule 2) are used in our fuzzy 
logic, and the MIN-MAX compositional rule of fuzzy inference is employed for defuzzification. The MIN-MAX 
compositional method is indicated as follows: 
  
zr1 = MIN [ |zr1(Num)|, |zr1(Area)|, |zr1(Cir)|, |zr1(Clu)| ] 
zr2 = MIN [ |zr2(Num)|, |zr2(Area)|, |zr2(Cir)|, |zr2(Clu)| ]                                                 (10) 
 
zr1 U r2 = MAX [ zr1, zr2 ]                                                                     (11) 
  
If zr1 U r2 = zr1       � Benignancy 
If zr1 U r2 = zr2       � Malignancy                                                               (12) 
  
where zr1(Num), zr1(Area), zr1(Cir) and zr1(Clu) are the respective GDMF values in rule 1 for the benign case, the same 
as that, zr2(Num), zr2(Area), zr2(Cir) and zr2(Clu) are the respective GDMF values in rule 2 for the malignant case. MIN 
and MAX are the operations that take the greater of two or more values and the lesser of two or more values, 
respectively. As a concrete example shown in Fig.6, since zr1=|zr1(Clu)|=0.4 (rule 1 for benign case) is greater than zr2=| 
zr2(Area)|=0.2 (rule 2 for malign case), the output of the fuzzy inference is "it is a benign clustered microcalcifications". 
Here, in the case of zr1= zr2, it is a "cannot decide" case. In this study, these cases are considered a failure and are 
regarded as misclassification. 

Training for classification in this method is equivalent to determining µ, σ and c in GDMFs from training data. If the 
number of sample images is limited, the value of σ may not accurately reflect the characteristic of all images of the same 
category. Therefore in this study we use GA at training phase for determining the optimal membership function by 
varying the value of coefficient c. 

An individual in our GA consists of eight chromosomes as shown in Fig.7. Each chromosome corresponds to a 
coefficient in GDMFs. For example, chromosome cr1Num in Fig.7 indicates the coefficient c in GDMF that produced by 
the feature Num calculated from benign sample images. Each chromosome has 8-bit, and the range of c becomes 0.01 ≤ 
c ≤ 2.56. We use selection, crossover and mutation as genetic operation. Procedure of GA used in this study is described 
as follows. 
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Fig. 5 Gaussian-distributed membership functions. Fig. 6 Illustration of the fuzzy system used in this study. 
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I. 200 individuals at the initial generation are generated randomly. 
II. Fitness values are computed by using the fitness functions shown as follows: 
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where p and q refer to the numbers of learning data and misclassification. When q = 0, namely, all learning data are 
correctly classified during the training phase, then fitness1=1.0. zr1i and zr2i represent the minimum GDMF values 
against ith sample image and are obtained from fuzzy rule 1 and rule 2, respectively. When the difference between 
zr1i and zr2i increases, the value of fitness2 becomes greater. 

III. Individuals are ranked according to the value of fitness1. Those individuals having the same values of fitness1 are 
further ranked according to the value of fitness2. 

IV. The last sixty low-ranked individuals are replaced by the same amount of new individuals obtained by employing 
crossover operation on the first sixty high-ranked individuals. The probability of mutation is 10% for each bit in the 
chromosome. Mutation operation is not implemented to the first twenty high-ranked individuals in a generation. 

V. Steps II, III, and IV constitute one generation, and are repeated to fiftieth generation. The optimized coefficients are 
obtained from the individual having the highest fitness in the fiftieth generation. 
The shapes of GDMFs are determined by the optimized coefficients been obtained at the training phase. Then 

unknown ROI images are classified by inputting their features into trained fuzzy system. 
 

3. RESULTS AND DISCUSSION 
 

Our methods were applied to twenty-five ROI images involving microcalcifications in the MIAS database. These 
ROI images consist of thirteen benign cases and twelve malignant cases. In the MIAS database, x, y coordinate of center 
of abnormality and approximate radius of circle enclosing the abnormality are recorded. We determined the sizes of 
ROIs according to them.  

In training phase, ten benign cases and ten malignant cases were used as training data. The remaining five cases 
were used for classification as unknown images. All sets of their combinations were employed to obtain the result. 
Moreover, we obtained results using general GDMFs where the coefficients c was set at 1.0, namely, the GA was not 
used. The method without the GA is referred as to "FL" in this paper.  

The results are shown in Table 1. In this table, denominators in parentheses are the total numbers of using one case 
for classification (Malignant: 31462861110131011 =×=× CC , Benign: 4356666610121012 =×=× CC ), and numerators are 

the numbers of correct classifications for the case. Sensitivity and specificity are the probabilities of correct 
classifications for malignant and benign cases, respectively. The sensitivity rates for FL and GA-FL method were 66.3% 
and 84.8%, respectively. The specificity rates for FL and GA-FL method were 82.0% and 76.6%, respectively. 
Furthermore, overall accuracy is indicated as the probability of correct classifications for both categories. The accuracy 
of FL and GA-FL method were approximately 74.1% and 80.7%, respectively. When we only took into account those 
cases whose sensitivity and specificity were greater than 50%, the accuracy of FL and GA-FL methods were 
72.0%(18/25) and 84.0%(21/25), respectively. The results indicate that the GA-FL method was more effective than FL.  

The methods were also evaluated by ROC analysis. The classification accuracy was quantified by the area, Az, 
under the ROC curve. In the ROC evaluation, a conventional artificial neural network with back-propagation learning 
(BP-ANN) and an improved ANN based on GA to determine the weighting coefficients at ANN (GA-ANN) were also 
compared with FL and GA-FL. Structures of BP-ANN and GA-ANN are shown in Fig.8. The feature values calculated 
from an unknown ROI in Sec.2.3 were inputted input-layer at the both ANNs, as well as FL and GA-FL. 

Fig.9 shows the ROC curves obtained by four classification methods (GA-FL, FL, BP-ANN, GA-ANN), and Table 
2 shows the specificity and accuracy in the case that the sensitivity is 100 %. It is noted from the results that the GA-FL 
method shows the highest Az value (0.95) of ROC curve and the highest accuracy (88%). These results indicate 
usefulness of GA-FL. Here, in order to obtain the ROC curves, the following equations 
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zr1 U r2 = zr2 - zr1                                                                            (15) 
 
If zr1 U r2 < th       � Benignancy 
If zr1 U r2 ≥ th       � Malignancy                                                               (16) 
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Table 1 Classification results utilizing FL and GA-FL. 

Fig.9 ROC curves obtained from each classification results. 

Table 2 Classification results utilizing BP-ANN, GA-ANN, 
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were substituted for equation (11) and (12). th is a threshold value. zr1 U r2 has a range of -1.0 to 1.0, and is close to 1.0 if 
being malignancy case. 

The results implied the potential usefulness of our proposed GA-FL method. However, to improve the classification 
performance, it is still necessary to investigate the detection performance of microcalcifications and to reconsider the 
adequate features and to increase sample images. 
 

4. CONCLUSION 
 

In this paper, we have described a new scheme for automated classification of mirocalcifications on mammograms 
using fuzzy logic that applied genetic algorithm to optimize the premise-part membership functions (GA-FL). In this 
scheme, our extraction method using morphology filter for microcalcification’s regions was performed. The proposed 
GA-FL method was applied to mammographic micorcalcifications in the MIAS database. As the results, the accuracy of 
classification was 88% (Sensitivity 100%, Specificity 77%), and Az value of the ROC curve was 0.95. Moreover, GA-
FL was compared with conventional fuzzy-logic method (FL) and two ANN methods (BP-ANN and GA-ANN). The 
results show that GA-FL had the highest accuracy and Az value of ROC curve among the four classification methods. 
Future work increasing sample images for further feasibility test on the proposed method is needed. 
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